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A B S T R A C T

A protein biomarker discovery workflow was applied to plasma samples from patients at different stages
of diabetic kidney disease. The proteomics platform produced a panel of significant plasma biomarkers
that were statistically scrutinised against the current gold standard tests on an analysis of 572 patients.
Five proteins were significantly associated with diabetic kidney disease defined by albuminuria, renal
impairment (eGFR) and chronic kidney disease staging (CKD Stage �1, ROC curve of 0.77). The results
prove the suitability and efficacy of the process used, and introduce a biomarker panel with the potential
to improve diagnosis of diabetic kidney disease.
© 2017 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Protein biomarker discovery and validation of any disease is
important for accurate and timely diagnosis as well as providing
novel drug discovery targets and new options for therapeutic
development. The most utilised biological source for biomarkers is
plasma (or serum) which contains a snapshot of the physiological
state of all tissues within the patient [1]. However, the discovery
and validation of biomarkers for disease using mass spectrometry
can be a lengthy and challenging process [2]. The design and
methodology employed have huge impacts on the quality of the
final results and their significance [2]. We describe a comprehen-
sive workflow design for discovering and analytically validating a
set of biomarker proteins specific for diabetic kidney disease (DKD)
using mass spectrometry. An earlier pilot version of this study
appeared as a technical note [3].

Diabetes is the largest cause of kidney disease (nephropathy)
with 1 in 3 adults with diabetes having chronic kidney disease [4].
Worldwide, over 2 million people currently receive treatment for
end stage renal disease (ESRD), although this number is likely to
represent only 10% of people who actually need treatment to stay
alive [5]. If DKD is detected early then appropriate intervention can
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help reduce further deterioration in kidney function before costly
hospital-based care is required. The current gold standard tests for
detecting early stage kidney disease are urinary albumin:creati-
nine ratio (ACR) and estimated glomerular filtration rate (eGFR),
but the reliability of these results has been the subject of debate
amongst clinicians [6,7]. Therefore, there is a current need to
develop a more robust and specific alternative to ACR and eGFR for
early detection of kidney disease.

The pipeline for proteomics-based biomarker development
usually proceeds through several phases —discovery, verification
and analytical validation. The discovery phase provides an initial
list of proteins that may play a role in the course of disease
progression. For mass spectrometry discovery, quantitative shot-
gun methods (such as iTRAQ) for assessing the relative concen-
trations of proteins are well established [8] and can provide that
initial list of candidates biomarkers. This list must then be
validated.

Analytical validation requires testing of the biomarker panel
across a large cohort and is the primary barrier for biomarker
development as the time, cost and reproducibility of such studies is
burdensome. To overcome this, effective methods are required to
validate potential biomarkers in large clinical cohorts. There are a
variety of multiplexed assays for protein biomarker development
including microarrays [9], fluorescence imaging [10] and immuno-
assays, in particular, enzyme-linked immunosorbent assay (ELISA)
[11,12]. An emerging alternative platform to ELISA for multiplexed
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biomarker analysis is targeted mass spectrometry or MRM
(Multiple Reaction Monitoring)/SRM (Selective Reaction Monitor-
ing), with the capacity for substantial multiplexing within a single
liquid chromatography mass spectrometry (LCMS) run, an advan-
tage when a large panel of biomarkers are required to be measured
[12]. The recent development of data independent acquisition
(DIA) workflows (MS/MS all, SWATH) presents a promising and
novel MS quantitation technology [13,14]. However, DIA requires
the latest generation of high-end MS instrumentation and it is yet
to be established as a proven and robust MS-based quantitation
technology across various biological matrices.

Prior to MRM validation the candidates must be individually
verified where each protein is developed into a unique peptide
signature, that clearly and specifically identifies and measures
each peptide in turn. Targeted mass spectrometry is performed
with a triple-quadrupole mass spectrometer, where precursor
peptide ions are chosen as candidates to represent their
respective protein. The precursor peptide ions are filtered by
the first quadrupole and fragmented into product ions in the
second quadrupole. Each product ion is then guided through the
third quadrupole to the ion detector. The combination of a
precursor and product ion pair is described as a “transition” and
the amount of signal recorded by the detector forms the basis of
protein quantitation by MRM.

The aim of this study was to find statistically meaningful
plasma protein biomarkers specific to DKD through the develop-
ment of a biomarker discovery and validation pipeline. These
biomarkers would be incorporated into an early detection test that
is more specific and robust than the current gold standard tests.
This process was designed to start with a quantitative experiment
using pooled, well-defined samples followed by preliminary
validation on a relatively small pilot cohort, and then analytical
validation in a much larger independent cohort. The combination
of instrumentation common to any proteomics facility, with
readily available mass spectrometry techniques (iTRAQ, MRM) and
simply derived comprehensive labelling controls provides an ideal
platform for plasma biomarker discovery and validation, as applied
to DKD.

2. Materials and methods

All chemicals were sourced from Sigma-Aldrich (St Louis, MO,
USA) unless otherwise stated.

2.1. Clinical samples

The clinical and demographic characteristics of the cohorts
used in this study are shown in Supplementary Table S1. All clinical
plasma samples were provided by the Fremantle Diabetes Study
(FDS) which has been described in detail previously [15]. EDTA
plasma was collected from all patients after an overnight fast and
stored at �80 �C until required. The FDS collection protocol was
approved by the Fremantle Hospital Human Rights Committee (07/
397) with all patients providing informed written consent. In all
patients kidney disease was measured by both albumin creatinine
ratio (ACR) and estimated glomerular filtration rate (eGFR). The
patients were classified by their ACR as normoalbuminuria
ACR < 3 mg/mmol, microalbuminuria 3 � ACR < 30 mg/mmol or
macroalbuminuria ACR � 30 mg/mmol. eGFR was estimated using
the CKDEPI equation [16]. Chronic kidney disease (CKD) stage was
determined using both ACR and eGFR according to current KDIGO
(Kidney Disease Improving Global Outcomes, 2012) guidelines
[17]. In the discovery phase, 20 samples from each of the three
albuminuria groups were pooled and analysed by iTRAQ. A further
10 new individuals from each albuminuria group were used for
preliminary validation of the putative biomarkers from the
discovery phase using MRM. This provided the final MRM assay
where the analytical validation phase measured the biomarkers
from a further 572 independent patient samples with type 2
diabetes.

2.2. Immunodepletion

A Human 14 Multiple Affinity Removal (MARS14) column
(Agilent Technologies, Australia) was used to chromatographically
remove the 14 most abundant proteins from human plasma
samples according to the manufacturer’s protocol. In brief, 20 mL of
each plasma sample was loaded onto a 4.6 � 50 mm MARS 14 HPLC
column in an Agilent 1100 HPLC system (Agilent Technologies,
Australia) with UV detection and fraction collection. Immunode-
pleted proteins were monitored at 280 nm and collected in a 6 min
window at a flow rate of 0.125 mL/min over a 25 min run. The
columns were used for 250 injections each as per the manufac-
turer’s recommendation.

2.3. Discovery phase � iTRAQ

2.3.1. Sample preparation
Proteins in the immunodepleted samples were trypsin digested

and labelled with iTRAQ reagent according to the manufacturer’s
protocol (Sciex, Framingham, MA, USA). The labelling of samples
was as follows: reference control plasma – label 114, normoalbu-
minuria group – label 115, microalbuminuria group � label 116,
macroalbuminuria – label 117. After labelling the samples were
mixed 1:1:1:1 based on their protein content.

2.3.2. First dimension ion exchange
Labelled peptides were desalted on a Strata-X 33 mM polymeric

reversed phase column (Phenomenex, Torrance, CA, USA) by firstly
rinsing the column with 100% methanol (Thermo Fisher Scientific,
San Jose, CA, USA), 100% acetonitrile (Fisher Scientific, Australia),
100% milliQ H2O followed by loading of the labelled peptides,
washing with milliQ H2O and elution with 80% acetonitrile plus
0.1% formic acid. The dried sample was dissolved in 100 mL of
10 mM KH2PO4, 10% acetonitrile, pH 3.0 and separated by strong
cation exchange liquid chromatography (SCX) on an Agilent 1100
HPLC system (Agilent Technologies) using a PolySulfoethyl column
(4.6 � 100 mm, 5 mm, 300 Å, Nest Group, Southborough, MA, USA).
Peptides were eluted with a linear gradient of 0–400 mM KCl in
10 mM KH2PO4, 10% acetonitrile, pH 3.0 at a flow rate of 0.5 mL/
min. A total of 40 � 1 min fractions were combined into 8 fractions
based on an even amount of peptide absorbance at 280 nm for
each. The 8 fractions were desalted on a Strata-X 33 mM polymeric
reversed phase column as detailed previously. The 8 fractions were
then dried under vacuum.

2.3.3. Second dimension reverse phase nanoLC onto MALDI plates
Dried peptide fractions from the SCX were dissolved in 0.1%

trifluoroacetic acid and loaded onto a C18 pre-column and then
separated on a C18 PepMap100, 3 mm column (Dionex, Sunnyvale,
CA, USA) using the Ultimate 3000 nano HPLC system (Dionex). A
gradient of 10–40% acetonitrile in 0.1% trifluoroacetic acid at a flow
rate of 300 nL/min was used with the eluent mixed 1:3 with matrix
solution (including Calibration Mixture) and spotted onto a 384
well Opti-TOF plate (Sciex) using a Probot Micro Fraction Collector
(Dionex).

2.3.4. MALDI mass spectrometry
The spotted plates were analysed using a 4800 TOF/TOF system

(Sciex). The Nd:YAG laser was set at 355 nm and a frequency of
200 Hz, with 400 shots per spot for MS data acquisition and MS
data acquired for singly charged peptides in the mass range of 800–
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4000 m/z. A job-wide interpretation method selected the 20 most
intense precursor ions above a signal/noise ratio of 20 from each
spectrum for MS/MS acquisition but only in the spot where their
intensity was at its peak. MS/MS spectra were acquired with 4000
laser shots per selected ion with a mass range of 60 to the precursor
ion.

Protein identification and iTRAQ quantification were performed
using ProteinPilotTM 2.0.1 Software (Sciex). MS/MS spectra were
searched against a human protein database. Search parameters
were: Sample type, iTRAQ 4plex (peptide labelled); Cys alkylation,
MMTS; Digestion, trypsin; Instrument, 4800; Special factors, none;
Species, none; Quantitate tab, checked; ID focus, Biological
modifications, Search effort, thorough; Detected protein threshold
(unused ProtScore), 1.3–which corresponds to proteins identified
with >95% confidence. The peak area ratios of the iTRAQ reporter
ions for each peptide reflected the relative abundances of the
peptides. For quantification analysis protein expression ratios were
computed by the Paragon Algorithm (Protein Pilot) based on the
peak area ratios of the peptides accounting for the same protein.

2.3.5. iTRAQ initial biomarker selection
Each of the significant differentially expressed proteins from

the iTRAQ analysis of the FDS cohort was catalogued. To ensure as
inclusive a selection of potential biomarkers as possible, the
primary significance level was broadened from selection of those
proteins with a default p value of <0.05 to include a secondary list
of proteins with differential expression ratio of >2 and <0.5 and
also those proteins where the p value was <0.1. Only a single
replicate iTRAQ experiment was performed on pooled samples,
with the study design then moving to individual sample analysis
with greater statistical power.

2.4. Verification and validation phase – MRM

2.4.1. Reference plasma control
A reference plasma control sample was obtained from pooling

plasma from three healthy volunteers. This was aliquoted and
stored at �80 �C, and used throughout the study. The reference
plasma control sample was labelled with 18O water and termed
“Std18”. The same amount of Std18 was spiked into each patient
sample (1:1) prior to LC-MRM/MS analysis to correct for spray
efficiency and ionisation differences between analytical runs. The
Std18 was prepared as per references [18–20].

2.4.2. Preparation of plasma for MRM
Each immunodepleted plasma sample was concentrated in a 10

kDa Vivaspin 6 concentrator (Sartorius AG, Goettingen, Germany)
and reconcentrated in 1 M triethylammonium bicarbonate buffer
(TEAB) by centrifugation. The protein concentration in 2 mL of
depleted plasma was measured with an infrared-based method
(Direct Detect, Merck Millipore, Darmstadt, Germany) according to
the protocol provided by the manufacturer. Depleted plasma
protein samples were reduced with 30 mM Tris(2-carboxyethyl)
phosphine, alkylated with 30 mM iodoacetamide and digested
with 0.2 mg/mL trypsin (trypsin:plasma protein ratio of 1:20). To
stop the digestion reaction, samples were boiled, then desalted on
Strata-X 33 mm polymeric reversed phase columns (Phenomenex)
and dried down in a speedvac.

2.4.3. Verification of MRMs
MRM assays were developed using a 4000 QTRAP system

(Sciex) equipped with a NanoSpray source with data analysis and
refinement using Skyline Software [21] (University of Washington,
Seattle, WA, USA). Multiple MRM transitions were developed per
peptide for each putative protein biomarker for both the light
version of the peptide and the 18O-labelled heavy version of the
peptide. Cross contamination testing was carried out with
injections of unlabelled plasma while monitoring transitions for
both unlabelled and 18O labelled versions of each peptide. No
significant peaks with a S/N > 3 were detected for any of the 13 final
peptides in the heavy label peptide. To determine the linear range
of detection of each unlabelled peptide a dilution series study was
performed in duplicate with the light version and 18O-labelled
heavy version of a reference plasma sample. The linear quantifica-
tion ranges and R2 values are shown in Supplementary Table S2.

The FASTA file for each biomarker protein sequence was
imported into the Skyline program; the precursor and fragment
ions for each peptide derived from the protein were generated by
performing in silico digestion. The peptide filter conditions were as
follows: the precursor length range was set at 7 to 21 amino acids,
and peptides with repeat arginine (Arg, R) or lysine (Lys, K)
residues were not used. If proline (Pro) was next to an arginine
(Arg, R) or lysine (Lys, K) residue, the peptide was not used. Useful
proteotypic peptide information from literature and repositories
(PeptideAtlas [22], MRMaid [23]) was incorporated and the
selection of transitions was supported by spectral libraries
(Institute for Systems Biology [24], National Institute of Standards
and Technology [25], Global Proteome Machine organisation [26],
Bibliospec [27]). Transitions for 18O-labelled peptides were created
by selecting the “18O(2)” isotope modification in the Peptide
Settings tab in Skyline. The final list of transitions with precursor/
product ion, collision energy (CE) and declustering potential (DP)
values are provided in Supplementary Table S3.

Initially, to confirm the iTRAQ data the same pooled samples
were analysed with the optimised MRM method on the QTRAP and
the data viewed in Skyline to verify the MRM assay and the
presence of the 18O-stable isotope labelled reference plasma
version of each peptide. For preliminary validation these samples
were followed by a pilot study on 3 new sets of 10 patients from
each of the normo, micro and macroalbuminuria groups. The
comparison of these individuals dictated the final MRM assay that
was ultimately applied to the large clinical cohort of 572 patients
for analytical validation.

2.4.4. MRM mass spectrometry
Relative peptide quantitation MRM analyses were performed

with a 4000 QTRAP mass spectrometer coupled with a Dionex
Ultimate 3000 nano-HPLC system. To reduce the void volume and
obtain sharper intensity peaks no pre-column was used and a small
sample loop (100 mm ID capillary tubing containing 1 mL sample)
was inserted in the autosampler. A 1 mL volume of loading buffer
(98% H2O, 2% ACN, 0.05% TFA) containing 1:1 (v/v) ratio of tryptic
unlabelled and 18O-labelled reference plasma peptides was loaded
onto a 15 cm Zorbax 300SB-C18 (Agilent Technologies) analytical
column. Peptides were separated in a 90 min LC run with a linear
gradient of 2 to 30% buffer B (100% ACN + 0.1% formic acid) at a flow
rate of 400 nL/min. The conditions set in Analyst v1.4 MS software
(Sciex) for scheduled MRM analysis of plasma biomarker peptides
by the 4000 QTRAP interfaced with a nanospray source were as
follows: ion spray (IS); 2900 V, interface heater temperature (IHT);
200 �C; collision gas (CAD); HIGH, ion source gas 1 (GS1); 30 and
curtain gas (CUR); 10. MS parameters for declustering potential
(DP) and collision energy (CE) were calculated by the Skyline
program and MS resolutions for Q1 and Q3 were set at low.

In the MS settings for scheduled MRM, polarity was set to
positive, MRM detection window was 360 s, target scan time was
4 s and pause time between mass ranges was 5 milliseconds. To
verify plasma peptide sequences, an MRM triggered MS/MS
experiment was performed with enhanced product ion (EPI)
experiments targeting specific transition pairs. The following
settings were used: IDA (Information Dependant Acquisition) first
level criteria: 1–2 most intense peaks which exceed 5000 counts
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per second, with rolling collision energy and a mass tolerance of
250 mDa. Following this, two EPI scans were carried out with the
following conditions to obtain MS/MS spectra: scan range of 200–
1200 m/z, scan rate of 1000 Da/s, positive polarity, number of scans
to sum = 2, product of 30 Da and total scan time (including pauses)
was 2.7 s. A Mascot (Matrix Science, London, UK) search and/or
manual inspection of MS/MS fragmentation spectra were per-
formed to confirm peptide identity. In addition, interference
testing was carried out with Skyline by using the dot product
(dotp) cutoff >0.8 between the acquired MSMS spectrum and the
final MRM relative transition heights as well as between the MRM
and the spectral library obtained MSMS spectra. Interfering
transitions were removed to maintain the integrity of the data.
In the analytical validation phase of the study, a single scheduled
MRM experiment was used to quantify the selected unlabelled and
18O-labelled target transitions. MRM assays were created using the
Scheduled MRM algorithm on Analyst.

2.4.5. Skyline data collation
All transition peaks were visually checked in Skyline and

wrong/missed peaks corrected manually. Un-labelled/18O-labelled
peptide ratios were exported from Skyline for further analysis.

MRM-quantified biomarker peptide peak areas were adjusted
to 1 mg peptide ‘on column’ by multiplying them by a normal-
isation factor based on their infrared-calculated protein concen-
tration. The normalised unlabelled peak areas were then divided
by their respective 18O-labelled peak area to obtain the final
unlabelled/18O-labelled peak area ratios.

The limit of detection (LOD) for MRM peak intensity ratio
analysis was a signal to noise ratio of greater than 3:1 for transition
peak area: background peak area. This LOD was based on a
previous MRM quantitative analysis of plasma peptides with a
4000 QTRAP [28]. Additionally, all transitions for both unlabelled
and 18O-labelled transitions with minimum peak height intensities
below 1000 counts were excluded from analysis. Total peak area
and background area values were obtained from viewing the
peptide results grid in Skyline software. The unlabelled and 18O-
labelled transitions were required to have the same retention time
and same order of transition intensity. This is in addition to
confirmation of the peptide’s identity with a full scan MS/MS
spectrum that had been previously performed.

2.4.6. Synthetic peptide
A 13C15N stable isotope-labelled synthetic peptide sequence

from Complement factor H-related protein 2 (CFHR2) was obtained
from Sigma-Aldrich (USA), with purity of greater than 95% as an
AQUATM peptide. The cysteine residue of the peptide was alkylated
to the stable S-carboxyamidomethylcysteine (CAM) form. The
peptide sequence from the CFHR2 protein was LVYPSCEE
[K_13C15N] (RMM = 1132.5 Da) where the terminal K residue had
both 13C and 15N isotopes as denoted.

2.5. Data analysis

Demonstrations of MRM assay linearity, technical reproduc-
ibility and sensitivity were performed with synthetic CFHR2
peptide LVYPSCEEK. A dilution series of five known concentrations
(from 500 attomoles/mL to 200 femtomoles/mL loaded on column)
of the synthetic CFHR2 peptide were tested. This standard was
spiked into the post-tryptic digested immunodepleted reference
plasma and measured by MRM six times. To create the linear
regression standard curve, the peptide concentration was calcu-
lated from the average peak area quantified in Skyline MRM
software analysis program. Standard deviation and CV calculations
for peptide concentration were also performed from the average
peak area value to determine technical reproducibility of the assay
for the synthetic CFHR2 peptide.

The standard curve was also used to verify the LOD and limit of
quantification (LOQ) of the synthetic CFHR2 peptide in the MRM
assay. The LOD was set to an average peak area from six technical
replicates of at least 3 times above background signal and the LOQ
was set to an average peak area of at least 10 times above
background signal [28].

2.5.1. Statistical analysis
All statistical analyses were performed in SPSS for Windows

(version 21; SPSS Inc., Chicago, IL, USA). The data presented uses
the relative concentration of a protein between samples, conse-
quently the validation MRM results were produced as a set of ratios
of unlabelled/18O-labelled peak areas from the set of transitions for
each peptide. These ratios were normalised to the median value for
each peptide. All biomarker peak area ratios were natural (loge)
transformed to normalise their distribution. To confirm candidate
biomarkers in the pilot study, two-way comparisons using a Mann-
Whitney test for non-parametric data were performed between
the albuminuric groups (normo- versus micro-, micro- versus
macro-, and normo- versus macroalbuminuria). If a protein met
the criteria of p < 0.1 for at least one peptide then that protein was
considered for the validation phase. In the analytical validation
phase, Spearman’s rank order correlation (r) was used to
investigate the relationship between each biomarker, ACR, eGFR
and CKD. A two-tailed significance level of p < 0.05 was used for
these analyses.

The diagnostic relationship between plasma biomarker con-
centrations and i) microalbuminuria, ii) eGFR<60 mL/min per
1.73 m2 and iii) CKD stage were examined using multivariate
logistic regression modelling (forward conditional variable selec-
tion with p < 0.05 for entry and >0.10 for removal). All protein
biomarkers with bivariate p�0.20 were considered for entry in a
forward stepwise manner. To avoid overfitting the models, the
cohort was randomly split into train and test sub-cohorts (80:20
split, respectively), with the ratio of people with the outcome of
interest similar in both groups [29]. The train sub-cohort was used
for model development for each diagnostic outcome, while the test
sub-cohort was used for model validation. The clinical and
demographic characteristics of train and test sub-cohorts are
shown in Supplementary Table S1. The discriminative ability of
each model was assessed by the area under the curve (AUC)
produced by receiver operating characteristic (ROC) curves. The
Youden Index was used to determine the optimal predicted
probability cut-off to achieve maximum sensitivity and specificity
for each model [30]. Other measures of diagnostic performance
were based on the optimal cut-off; false positive and false negative
rate, positive and negative predictive value, and diagnostic odds
ratio. To compare the performance of each biomarker model to the
current gold standard, firstly, the ability of patient gold standard
ACR and eGFR data to correctly identify individuals with eGFR < 60
mL/min per 1.73 m2 and ACR � 3 mg/mmol, respectively was
assessed. Secondly, the biomarker models for eGFR < 60 mL/min
per 1.73 m2 and ACR � 3 mg/mmol were compared to their
respective gold standard tests to evaluate performance. Finally,
the biomarker model for the combined outcome of CKD
(incorporating eGFR < 60 mL/min per 1.73 m2 and ACR � 3 mg/
mmol) was compared to all other models.

3. Results and discussion

3.1. Study design

The most critical aspect of the initial phase of any biomarker
project is to select high quality patient cohorts. This includes



S.D. Bringans et al. / EuPA Open Proteomics 14 (2017) 1–10 5
careful patient selection that is representative of the clinical
question to be addressed as well as consistent collection protocols
to minimise any potential degradation of protein via freeze thaw
cycles or extended periods of room temperature exposure. The
plan for this study is shown in Fig. 1 and describes the DKD
biomarker discovery, preliminary and analytical validation work-
flow from start to finish.

In the discovery phase of this project the patient cohort was
chosen to provide samples of people with varying and distinct
levels of kidney disease as measured by albuminuria as a
complication of diabetes. Pools of samples were labelled with
iTRAQ reagents and analysed on a MALDI TOF/TOF mass
spectrometer. The potential biomarkers derived from this data
were converted into a series of MRM transitions, and verified for
data quality. Along with the 3 original pooled samples a further 3
groups of 10 individuals representing normo-, micro- and macro-
albuminuria were tested in a randomised order by targeted MS.
This pilot study of 30 individuals provided sufficient data to derive
a final MRM assay list for validating on the larger independent
clinical cohort of 572 patients.

3.2. Discovering biomarker candidates � iTRAQ

The iTRAQ results as analysed by Protein Pilot (Sciex) provided a
list of proteins and their relative expression levels between the
three albuminuria (normo-, micro-, and macroalbuminuria)
groups. From this, a primary list and a secondary list of potential
biomarkers were derived. The selection criteria to produce the
overall list were deliberately kept broad so as not to exclude any
protein that may be of interest. Proteins were excluded where the
quantitative or identification evidence was poor. When comparing
the three albuminuria groups against each other the iTRAQ data
provided a combined potential biomarker list of 32 proteins. Due to
the variability of replicate iTRAQ data (for example [31–33] show
only 43–61% common identifications across 3 iTRAQ replicates) the
current workflow was designed based on a single iTRAQ
experiment followed by a complementary small scale targeted
mass spectrometry pilot study. This orthogonal validation tech-
nique transformed the list of potential biomarkers into a final
analytical assay for large scale validation.

3.3. Verification and validation by MRM

MRM transitions were developed for each of the 32 potential
biomarkers using the following parameters. Preliminary MRM
transition lists were generated by a series of steps which included;
downloading protein candidate sequences, digesting proteins in
silico in conjunction with a filter (e.g. 7–21 amino acids, 0 missed
cleavage) and selecting a minimum of 4 transitions per peptide
(precursor charge z2, product charge z1). Useful proteotypic
Fig 1. Workflow for discovery and validation of diabetic kidney disease biomarkers. Tota
The uncoloured boxes denote the breakdown of samples into the normo-, micro- and 
peptide information from literature and repositories was incorpo-
rated with support from spectral libraries. A reference plasma
control was then used to search for and verify each of the peptides
selected for each of the potential biomarkers. If any MRM evidence
was found after analysis in Skyline then a full MS/MS spectrum was
acquired with an MRM triggered MS/MS run. The third piece of
evidence after MRM signal and MS/MS data was confirmation of
the suitability of the peptide for 18O-labelling. If all evidence was
satisfactory then the biomarker was added to the final biomarker
assay. Of the 32 potential biomarkers, 25 met the above criteria.

The MRM assay of the 25 potential biomarkers (41 peptides, 254
transitions) was used to quantify the proteins in a preliminary
validation of 3 � 10 individuals representing each ‘label’ from the
iTRAQ experiments. Of the 25 potential biomarkers, 8 were found
to be significantly different between the normo-, micro- and
macroalbumuric groups in this pilot study.

These 8 proteins formed the final biomarker MRM assay (13
peptides, 64 transitions) and were applied in the last phase of the
process to the analytical validation on 572 individual patient
plasma samples.

3.4. Stability and reproducibility of the proposed DKD protein
biomarker panel

In order to compare and measure protein concentrations over a
long period of time there is a requirement for a standard control
sample to provide a fixed reference point for all measurements.
The use of an 18O-labelling technique provides an elegant solution
by labelling every peptide in a reference plasma sample to produce
a “universal” standard [18–20]. With this method the two C-
terminal oxygen atoms on each peptide are exchanged from 16O to
18O with the reaction catalysed by trypsin. This results in a 4 Da
shift from the unlabelled peptide allowing easy discernment of
each form of the peptide in the mass spectrometer. This method is
both cheap and comprehensive, allowing every valid MRM for each
peptide to have a reference point for comparisons between
samples and across time. To complement this global internal
standard, a biomarker peptide was synthesised as an alternative
isotopically labelled standard, allowing an accurate measure of the
reference plasma variability.

3.4.1. 18O-labelled reference plasma
The 18O-labelled reference plasma (Std18) was created to

provide a common point of reference for all relative unlabel-
led/18O-labelled peptide peak area measurements. The stability of
Std18 18O-labelling over time was tested with a sub-batch of
freshly reconstituted Std18. After aliquots were tested the
remainder was stored at �20 �C for two weeks. Ratio comparisons
of eight biomarker peak areas showed high levels of labelling
efficiency with the median labelling performance of 98.2% at t = 0
l numbers of patient samples analysed, either in pools (as denoted) or individually.
macroalbuminuria categories as labelled.
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and 96.3% at t = 2 weeks. The worst performing peptide had a loss
of 3.3% labelling over the 2 weeks with the median loss across all
peptides at only 1.0% demonstrating the robustness of 18O-
labelling when stored at �20 �C for up to two weeks (Fig. 2).
The small percentage of unlabelled peptide present in the Std18 is a
fixed amount for all analyses and when comparing the changing
protein ratios from different patients the influence of this small
fixed value is negated.

3.4.2. Intra-and inter-day CV analysis of Std18 and synthetic peptide
control

Modern mass spectrometers are sensitive to subtle changes in
their operating environment. This can cause MRM-quantified
absolute peak areas of the same peptide from the same reference
standard to show significant variation between runs. This can be
overcome by using a fixed amount of labelled reference plasma
with each sample. Due to the use of peak area ratios, any
instrument variation is minimised as the unlabelled peptide co-
elutes with the fixed labelled peptide and experiences identical
chromatographic and ionisation conditions. To confirm this
hypothesis a fixed amount (100 fmoles) of a synthetic 13C15N
isotope-labelled peptide was spiked into unlabelled/18O-labelled
samples just prior to MRM analysis. Analysis of these samples was
spread over a 3 month time period, with the reference plasma
control sample included between every batch of 20 samples. In
total, 5 intra-day and 9 inter-day control plasma samples were run
in duplicate.

The peak areas of the synthetic standard in the 14 reference
plasma controls were compared in Skyline to the corresponding
18O-labelled reference peptide. Despite considerable peak intensi-
ty variation across the 14 controls over time, the overall peak area
profile for the synthetic peptide was highly similar to that of the
18O-labelled counterpart (Fig. 3a and b). Furthermore, when the
ratio of these two standards is calculated (Fig. 3c), this provides an
intra-day CV of 5.9% and an inter-day CV of 8.1% from the 14
controls.

Overall, this analysis demonstrated that the mass spectrometer
does vary in its response to the same amount of material on
column over time but the important aspect is that the response
ratio between the spiked and labelled peptides is the same. This
Fig 2. Stability of Std18 18O-labelling over time. Three replicates (n = 3) of Std18 biomarke
area ratios of 18O-labelled peptides were divided by the combined unlabelled and label
percentage terms. Error bars are 1 standard deviation from the average peak area ratio
demonstrates that even when the mass spectrometer has variation
in the ionisation of peptides the labelled standard captures this
variation and therefore corrects for it in the calculation of ratios of
unlabelled/18O-labelled peaks. This ensures that samples acquired
on different days, weeks or months can be compared against each
other because the 18O-labelled reference plasma is capturing the
instrument variation on that day at that time. The inclusion of a
known fixed amount of synthetic peptide also provides the
opportunity to derive absolute quantification of proteins if this is
desired, although it was not essential in this study. In this example
the absolute quantification range for the CFHR2 protein in plasma
was 0.94 ng–2.1 mg/mL. The LOD was 0.18 ng/mL with the LOQ at
0.94 ng/mL.

3.5. Analytical validation of diagnostic biomarkers

The final biomarker MRM assay of 8 proteins derived from the
discovery and pilot study was deployed to test the much larger
independent cohort of 572 individuals with type 2 diabetes. This
involved examination of ACR values as well as eGFR and the CKD
classification (KDIGO 2012). Of the 572 patients, 53.1% were male,
with a mean�SD age of 66.6 � 10.6 years and median [inter quartile
range] diabetes duration of 10.0 [3.0-16.0] years. In the cohort,
54.4% had normoalbuminuria, 33.4% microalbuminuria, and 12.2%
macroalbuminuria. Mean eGFR was 79.7 � 21.2 mL/min/1.73m2,
16.1% had eGFR<60 mL/min/1.73m2 and 69.6% were taking an ACE-
I and/or ARB. 50% of the diagnostic cohort had CKD defined by
eGFR < 60 mL/min/1.73m2 or ACR � 3.0 mg/mmol (CKD stage � 1,
Fig. 4).

Table 1 details the biomarker correlations to ACR and eGFR. Of
the 8 candidate biomarkers, 5 were significantly correlated with
ACR (APOA4, CFHR2, HBB, IBP3 and AMBP, all p < 0.05), and 5 with
eGFR (APOA4, APOC3, CFHR2, IBP3 and AMBP, all p < 0.05) (Table 1).
Four proteins in particular, APOA4, CFHR2, IBP3 and AMBP, showed
significant correlations with both ACR and eGFR for at least one
peptide.

To show the diagnostic ability of the biomarkers, multivariate
logistic regression models were developed in the train sub-cohort
for ACR � 3 mg/mmol, eGFR < 60 mL/min/1.73 m2 and CKD, and
validated in the test sub-cohort (Table 2). There were no significant
r peptides at t = 0 and t = 2 weeks (stored at �20�C) were analysed by MRM. The peak
led peak areas to determine the% of labelled peptide with their averages shown in
s.



Fig 3. Intra- and inter-day peak area profiles of 18O- and 13C15N-labelled CFHR2 peptides. Peak areas of 18O-labelled LVYPSCEEK peptide in 14 reference plasma controls (Fig
3a) and spiked 100 fmoles of synthetic 13C15N-labelled peptide LVYPSCEEK (Fig 3b), quantified by MRM. The controls were numbered 1–14, with the same colour (except blue)
used for intra-day duplicate samples. Inter-day samples and their duplicates (indicated as ‘a’ and ‘b’ samples) are coloured in blue. The% Peak Area Ratio for the 18O-labelled /
synthetic 13C15N-labelled peptides is shown in Fig 3c.The intra-day CV was 5.9% and the inter-day CV was 8.1%.

Fig 4. Stratification of patient cohort by ACR, eGFR and CKD risk. The cohort of 572 patients is shown as the distribution according to ACR and eGFR categories and the
associated CKD risk (KDIGO).
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Table 1
Biomarker correlation of MRM data for Pilot study (ACR) and Validation study (ACR and eGFR) for cohort of 572 patients.

Protein Name UniprotKB Accession Peptide N = 30 Pilot study N = 572 Validation Study

Mann Whitney test Spearman’s rho p-value

ACR p-value ACR p-value eGFR p-value

Adiponectin ADIPO (Pep1) GDIGETGVPGAEGPR 0.008 0.251 0.089
Apolipoprotein A-IV APOA4 (Pep1) LEPYADQLR >0.1 0.002 <0.001

(Pep2) ISASAEELR 0.083 <0.001 <0.001
Apolipoprotein C-III APOC3 (Pep1) DALSSVQESQVAQQAR 0.056 0.701 0.004
Complement C1q subcomponent subunit B C1QB (Pep1) IAFSATR 0.002 0.063 0.382
Complement factor H-related protein 2 CFHR2 (Pep1) TGDIVEFVCK >0.1 0.090 <0.001

(Pep2) LVYPSCEEK 0.030 0.010 <0.001
Hemoglobin subunit beta HBB (Pep1) SAVTALWGK 0.052 <0.001 0.355

(Pep2) VNVDEVGGEALGR 0.052 <0.001 0.346
Insulin-like growth factor-binding protein 3 IBP3 (Pep1) ALAQCAPPPAVCAELVR 0.083 <0.001 0.060

(Pep2) FLNVLSPR 0.069 <0.001 0.019
Protein AMBP AMBP (Pep1) TVAACNLPIVR >0.1 0.017 0.049

(Pep2) EYCGVPGDGDEELLR 0.037 0.210 <0.001

The significant biomarker proteins are shown with MRM data correlations to ACR for the Pilot study and both ACR and eGFR for the Validation study. The Pilot study shows the
best p-value for comparison between macro/micro/normoalbuminuria groups against ACR using a Mann Whitney test for non-parametric data. The Validation study data for
572 patient plasma samples shows the MRM peptide data with the corresponding Spearman’s rho p-value for correlation to ACR (mg/mmol) and eGFR (mL/min/1.73 m2)
values. For the Validation study bold values indicate p < 0.05.

Table 2
Diagnostic performance of biomarker models of microalbuminuria (ACR �3 mg/mmol), eGFR < 60 mL/min/1.73m2 and CKD compared to gold standard ACR and eGFR tests in
type 2 diabetes.

Diagnostic Test Diagnosis AUC True Positive Rate (Sensitivity) False Positive Rate
(1-Specificity)

DOR

Gold Standard ACR eGFR < 60 mL/min/1.73m2 N/A 73% 40% 4.0
Gold Standard eGFR ACR � 3 mg/mmol N/A 26% 8% 4.0

TRAIN (n = 459) BM (eGFR model)a eGFR < 60 mL/min/1.73m2 0.80 73% 25% 8.3
BM (ACR model)a ACR � 3 mg/mmol 0.68 72% 42% 3.6
BM (CKD model)a CKD � 1 0.68 56% 25% 3.9

TEST (n = 113) BM (eGFR model)a eGFR < 60 mL/min/1.73m2 0.81 88% 32% 14.9
BM (ACR model)a ACR � 3 mg/mmol 0.71 52% 15% 6.0
BM (CKD model)a CKD � 1 0.77 56% 15% 7.6

The performance of the models in the train and test sub-cohorts is shown.

- BM (eGFR model) (APOA4_Pep 2, APOC3_Pep 1, CFHR2_Pep 1, IBP3_Pep 2).
- BM (ACR model) (APOA4_Pep 1, C1QB_Pep 1, CFHR2_Pep 2, IBP3_Pep 2).
- BM (CKD model) (APOA4_Pep 1, CFHR2_Pep 2, IBP3_Pep 2).

a BM, Biomarker model; AUC, area under curve; DOR, diagnostic odds ratio. BM models were developed in train sub-cohort and validated in test sub-cohort.
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differences in clinical or demographic characteristics between the
two sub-cohorts (Supplementary Table S1).Independent associates
consistent across the three outcomes were APOA4, CFHR2, and
IBP3 (Table 2). Table 2 presents the diagnostic performance of each
of the biomarker models compared to the gold standard ACR and
eGFR diagnostic tests. The ACR and eGFR data for each individual
were used as the gold standard for diagnosing the opposite
outcome. When the ACR data were used to diagnose eGFR < 60 mL/
min/1.73 m2 it performed well, with a True Positive and False
Positive rate of 73% and 40%, respectively. In the opposite analysis,
the patient’s eGFR data had very poor True Positive rate (26%_ but
excellent False Positive rate (8%) when used to diagnose ACR � 3
mg/mmol (Table 2). Comparing the biomarker ACR and eGFR
models to the respective gold standard diagnostic tests, it can be
seen that there was an improvement in diagnostic performance for
both of the biomarker models in the test sub-cohort. The
biomarker eGFR model had an improved True Positive rate (88%
vs 73%) and a reduced False Positive rate (32% vs 40%) over the gold
standard ACR for diagnosing eGFR < 60 mL/min/1.73 m2, while the
biomarker ACR model had improved True Positive rate (52% vs
26%), but poorer False Positive rate (15% vs 8%). The diagnostic odds
ratio (DOR) for the eGFR and ACR biomarker models were
significantly better than those of the gold standards (Table 2,
eGFR 14.9 vs 4.0, ACR 6.0 vs 4.0). The biomarker CKD model,
combining both ACR and eGFR, has an AUC of 0.77 with a True
Positive rate of 56% and a False Positive rate of 15%. The benefit of
this test is that it is capable of diagnosing people that are normally
missed by individual gold standard ACR or eGFR tests, for example,
people with normoalbuminuria that have eGFR < 60 mL/min/
1.73 m2 (Fig. 4, n = 25), or those with eGFR � 60 mL/min/1.73 m2

and micro- or macroalbuminuria (Fig. 4, n = 194). These data
suggest that the biomarker CKD model is an effective alternative to
current gold standard diagnostic tests and could replace the need
for collection of urine and blood for analysis in two separate tests.

As expected for a biomarker discovery to validation pipeline
there was a level of attrition in moving from 32 iTRAQ derived
potentials to 25 verifiable potential biomarkers to an MRM assay
for 8 candidate biomarkers and finally to a panel of 5 significant
biomarkers with correlation to ACR (Fig. 5). This attrition
demonstrates the importance of initial wide selection criteria to



Fig 5. Biomarker progression from discovery to ACR correlation. The progression of
potential biomarkers identified from the discovery iTRAQ analysis through to those
that were statistically correlated to ACR.
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allow for any marker of potential to be included in the initial
discovery phase. Concomitant to this finding is that the majority of
candidate biomarkers identified in the pilot study remained
significant in the much larger cohort. The significance of the final
results vindicates the choice of workflow in developing biomarkers
for DKD. The initial pooled iTRAQ experiment followed by the pilot
study by MRM of a small group of individual patients allowed the
final analytical validation to take place on an independent large
cohort.

4. Conclusions

Currently over 400 million people have diabetes [34] and 1 in 3
adults with diabetes have chronic kidney disease. The biomarker
discovery pipeline detailed in this paper illustrates that a
comprehensive study starting with a small number of patient
plasma samples can ultimately produce a diagnostic test that has
advantages over the current gold standards (ACR, eGFR). Use of
highly stratified patient samples and the broad mass spectrometry
platform has produced a panel of biomarkers for DKD that have
ultimately been analytically validated in a large independent
cohort of 572 patients with significant correlations with the
current measures of disease. The multivariate analysis provided a
panel of markers that performed well when either ACR or eGFR was
the gold standard. Importantly, however, the utility of the panel
may be best expressed when diagnosing CKD with a single test
rather than requiring both urine and plasma collection and
analysis. Improved testing would allow earlier intervention and
therefore result in better patient outcomes. The 18O-labelling of the
reference plasma was a key tool to provide global relative
measurements over an extended analysis timeframe. The use of
a separate isotope labelled synthetic peptide provided confirma-
tion that the 18O-labelling was accounting for any instrument
variation. The approach described above is therefore a straightfor-
ward yet effective strategy for protein biomarker discovery
through to analytical validation, and has the capacity to provide
an improved diagnostic test for DKD.
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