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Aims: To validate the prognostic utility of a novel plasma biomarker panel, PromarkerD, for predicting renal de-
cline in an independent cohort of people with type 2 diabetes.

Methods: Models for predicting rapid estimated glomerular filtration rate (eGFR) decline defined as i) incident
diabetic kidney disease (DKD), ii) eGFR decline >30% over four years, and iii) annual eGFR decline >5 mL/min/
1.73 m? were applied to 447 participants from the longitudinal observational Fremantle Diabetes Study Phase
II. Model performance was assessed using discrimination and calibration.

-Ilf;};g/grg;betes Results: During 4.2 4 0.3 years of follow-up, 5-10% of participants experienced a rapid decline in eGFR. A consen-
Diabetic nephropathy sus model comprising apolipoprotein A-IV (apoA4), CD5 antigen-like (CD5L), insulin-like growth factor-binding
Diabetic kidney disease protein 3 (IGFBP3), age, serum HDL-cholesterol and eGFR showed the best performance for predicting incident
Biomarkers DKD (AUC = 0.88 (95% CI1 0.84-0.93)); calibration Chi-squared = 5.6, P = 0.78). At the optimal score cut-off,

Prognostic test this model provided 86% sensitivity, 78% specificity, 30% positive predictive value and 98% negative predictive
value for four-year risk of developing DKD.
Conclusions: The combination of readily available clinical and laboratory features and the PromarkerD biomarkers

(apoA4, CD5L, IGFBP3) proved an accurate prognostic test for future renal decline in an independent validation

cohort of people with type 2 diabetes.

© 2019 Elsevier Inc All rights reserved.

1. Introduction

Diabetes is the most frequent risk factor for chronic kidney disease
(CKD). An estimated 1 in 3 adults with diabetes have CKD,? and diabetes
is the leading cause of end stage renal disease (ESRD) with 44% of ESRD
cases in the US attributable to diabetes.? Diabetes-associated CKD is the
16th leading cause of death in the US, accounting for 40,000 deaths per
year.? Despite the high prevalence of CKD complicating diabetes, most
patients are unaware they have kidney disease. Timely identification
of those at risk is, therefore, an essential part of implementing interven-
tions that can prevent progression of CKD.

Conventional tests for assessing renal function, namely the urinary
albumin-to-creatinine ratio (ACR) and estimated glomerular filtration
rate (eGFR), have limited accuracy in predicting CKD progression.” A
large number of promising urinary and plasma biomarkers have been
assessed in the context of CKD® but large-scale longitudinal studies are
required to validate their value over and above that of known clinical
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risk factors. We recently identified a novel panel of six plasma protein
biomarkers (PromarkerD) comprising apolipoprotein A-IV (apoA4),
apolipoprotein C-III (apoC3), CD5 antigen-like (CD5L), complement
C1q subcomponent subunit B (C1QB), complement factor H-related
protein 2 (CFHR2), and insulin-like growth factor-binding protein 3
(IGFBP3) that have diagnostic and prognostic utility in diabetic kidney
disease (DKD).”~ The PromarkerD biomarkers apoA4, CD5L, C1QB and
IGFBP3 predicted future renal decline over four years independently of
known clinical risk factors in community-based patients with type 2 di-
abetes (T2D).2

The aim of the present study was to validate the prognostic utility of
PromarkerD for predicting rapid renal decline over a four-year follow-
up period defined as i) incident DKD, ii) eGFR decline >30%, and iii)
eGFR decline >5 mL/min/1.73m?/year, in a second, independent cohort
of people with type 2 diabetes. The predictive performance of a simple
consensus model which could be applied across the three definitions
of renal decline was also assessed. It was hypothesized that PromarkerD
would accurately predict renal outcomes in an independent group of
participants drawn from the same community-based cohort that was
used to develop the models, and that a simple consensus model
would provide similar predictive performance to more comprehensive
models.
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2. Subjects, Materials and Methods
2.1. Study design and participants

Data from the longitudinal observational Fremantle Diabetes Study
Phase II (FDS2), details of which have been published elsewhere,'® were
used in the present study. Of 1551 participants with type 2 diabetes re-
cruited to FDS2 between 2008 and 2011, 792 had attended three biennial
assessments (baseline, Year 2 and Year 4) between 2008 and 2014. The
first 345 to complete follow-up at Year 4 were used for the development
of PromarkerD prediction models® and are referred to as the “develop-
ment cohort” in the present study. The remaining 447 participants
formed the “validation cohort”, an independent (temporally external)
sample for assessing the utility of the prediction models. At each visit,
all participants underwent a comprehensive assessment including ques-
tionnaires, a physical examination and biochemical tests.!® Fasting
plasma samples were stored at —80 °C and used for biomarker measure-
ments in the present FDS2 sub-study. The FDS2 protocol was approved by
the Southern Metropolitan Area Health Service Human Research Ethics
Committee. All subjects gave informed consent before participation.

2.2. Renal outcomes

In the absence of a single clinically accepted surrogate for ESRD, three
commonly used definitions of rapid eGFR decline were assessed
i) incident DKD (eGFR <60 mL/min/1.73m? at Year 4 in individuals
above this threshold at baseline), ii) >30% eGFR decline between study
entry (baseline) and Year 4 (7.5%/year),'" and iii) annual decline in
eGFR 25 mL/min/1.73m? calculated as (baseline eGFR - Year 4 eGFR)/(fol-
low-up time between baseline and Year 4).'2 The Chronic Kidney Disease
Epidemiology Collaboration (CKD EPI) equation was used to calculate
eGFR.!*> Microalbuminuria and macroalbuminuria were defined as a
first-morning urinary ACR >3 mg/mmol and > 30 mg/mmol, respectively.

2.3. Biomarker quantification

A targeted mass spectrometry platform utilizing multiple reaction
monitoring (MRM) was used to measure baseline PromarkerD biomarker
concentrations in the validation cohort as used previously for samples
from the development cohort.”® Changes in relative peptide abundances
were measured against an '®0-labelled reference plasma to give peak
area ratios for each biomarker. The PromarkerD biomarkers measured in-
cluded apolipoprotein A-IV (apoA4), CD5 antigen-like (CD5L) and
insulin-like growth factor-binding protein 3 (IGFBP3)."® Complement
C1q subcomponent subunit B (C1QB) was not analyzed as it predicted a
group-based rapidly declining eGFR trajectory in a previous study,® and
this outcome definition was not included in the present study.

2.4. Statistical analyses

Data are presented as proportions, mean + standard deviation (SD),
geometric mean (SD range), or, in the case of variables which did not
conform to a normal or log.-normal distribution (In), median and
inter-quartile range [IQR]. All biomarker concentrations were In-
transformed prior to analysis. For independent samples, two-way com-
parisons for proportions were by Fisher's exact test, for normally distrib-
uted variables by Student's t-test, and for non-normally distributed
variables by Mann-Whitney U test. All statistical analyses were per-
formed in SPSS for Windows (version 22; SPSS Inc., Chicago, IL) and R
(version 3.5.1)' using RStudio software (version 1.1.456). A two-
tailed level of significance of P < 0.05 was used throughout.

A prediction model specific for each of the three definitions of rapid
kidney decline and a consensus model were evaluated. The develop-
ment of PromarkerD prediction models has been described in detail
elsewhere.® Briefly, the most parsimonious model (referred to as “clin-
ical plus biomarkers model 1” in the earlier study®) for each definition of

renal decline was defined by considering all clinically plausible variables
using a forward stepwise multiple logistic regression approach, before
the addition of relative plasma biomarker concentrations. For each def-
inition of renal decline, the final model algorithm (referred to as “parsi-
monious” in the present study) obtained from the development cohort
was applied to individuals in the validation cohort. First, the linear pre-
dictor (L) for each participant was calculated using the model intercept
(o) and regression coefficients (3-coefficients, 3;...3,) for m predictors
(X7...xm) and the respective participant data at each predictor (L = o +
BiX1 + .. + BuXm).E Next, the predicted probability of renal decline was
determined using e* / (1 + eb), where e is the exponential function. For
each model, only participants with complete data were included.

In addition to the previously defined most parsimonious models, a
simple consensus model comprising key baseline clinical predictors
(age, serum HDL-cholesterol and eGFR) and relative concentrations of
PromarkerD biomarkers at baseline (apoA4, CD5L and IGFBP3) shared
across the three renal outcomes was also assessed. The consensus
model algorithm obtained from the development cohort was applied
to individuals in the validation cohort using the same approach as for
the most parsimonious models.

Model performance in the validation cohort was assessed using indi-
ces of discrimination and calibration. Model discrimination was
assessed by the area under the receiver operating characteristic curve
(AUC) which provides the overall accuracy of the test for differentiating
individuals at high risk of future renal decline from those at low risk. The
sensitivity, specificity, positive predictive value (PPV) and negative pre-
dictive value (NPV) of the models were determined at the maximum
Youden Index, as well as for 5%, 10% and 20% four-year probability of
renal decline. The maximum Youden Index (sensitivity+specificity-1)
was used to determine the optimal score cut-off at which maximum
sensitivity and specificity could be achieved. Model calibration was de-
termined graphically by plotting observed and predicted numbers of
participants who experienced a renal outcome across deciles of risk
(from the Hosmer-Lemeshow (H-L) goodness-of-fit test). The H-L x2
test had eight degrees of freedom for model development and nine at
external validation.'

The generalizability of the proposed prediction models was evalu-
ated by comparing the relatedness of individuals in the development
and validation cohorts.!'® Briefly, a simple logistic regression model
was used to predict membership of the development or validation co-
hort by incorporating as independent variables all predictors defined
in the consensus model, i.e. age, serum HDL-cholesterol, eGFR, and
plasma concentrations of apoA4, CD5L and IGFBP3, as well as outcome
status (whether there was a decline in eGFR or not). If the model dis-
criminated well (AUC > 0.80), then individuals in the two cohorts
were said to be “not related” and the transportability rather than repro-
ducibility of the prediction model could be determined.

3. Results
3.1. Participant characteristics and outcomes

At baseline, the 792 participants included in the present study had a
mean =+ SD age of 65.6 & 10.3 (range 34.9-93.8) years, 54.3% were
male, and their median [IQR] diabetes duration was 7.0 [2.0-15.0]
years. The included participants did not differ significantly in age, gen-
der or body mass index (BMI) from the 759 remaining type 2 FDS2 par-
ticipants (all P> 0.06), but had shorter duration of diabetes and better
renal function (all P < 0.001). There were no significant differences in
age, sex, BMI, diabetes duration, HbA, or renal function at baseline be-
tween individuals with complete data included in models versus those
with missing data (data not shown).

The baseline characteristics of participants in the development and
validation cohorts are compared in Table 1. The two cohorts had similar
sex distributions, BMIs and renal function at baseline, but those in the
validation cohort were significantly younger, had shorter diabetes
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duration and a higher fasting plasma glucose (P < 0.002). During a mean
4 SD follow-up 0f 4.2 4- 0.3 years, 39 (9.8%) individuals in the validation
cohort developed DKD, 24 (5.4%) experienced a > 30% decline in eGFR,
and 32 (7.2%) had an annual eGFR decline >5 mL/min/1.73 m? (see Sup-
plementary Fig. 1 for overlap between groups and Supplementary Fig. 2
for mean changes in eGFR over time by group). The number of renal out-
comes and durations of follow-up in the two cohorts were not signifi-
cantly different (see Table 1).

Analysis of the relatedness of the two cohorts and downstream gen-
eralizability of the prediction models showed that individuals were not
related in terms of predictor variables (based on the consensus model)
or outcome status across all definitions of renal decline analyzed (inci-
dent DKD: AUC = 0.84 (95% C10.81-0.87), eGFR decline >30%: AUC =

0.85 (95% C10.82-0.87), eGFR decline >5 mL/min/1.73 m?/yr: AUC =
0.85 (95% C1 0.82-0.88)), suggesting the prediction models are trans-
portable to other populations.

3.2. Most parsimonious prediction models

When applied to the validation cohort, each parsimonious model
provided moderate to good discrimination (AUC range 0.63 to 0.83;
see Supplementary Fig. 3), but calibration was poor (P < 0.01) (see
Table 2 and Fig. 1). The model for incident DKD had the highest predic-
tive ability to discriminate participants who did and did not develop
DKD during follow-up (AUC = 0.83 (95%CI 0.77-0.88)). At the optimal
score cut-off (3.3%), this model provided 88.9% sensitivity, 63.5%

Table 1
Baseline characteristics and renal outcomes of the development and validation cohorts from the Fremantle Diabetes Study Phase II
Variable Development Cohort (n = 345) Validation Cohort (n = 447) P-value
N Mean + SD* N Mean + SD*
Age (years) 345 67.0 +94 447 64.4 +10.9 <0.001
Gender, % male 345 519 447 56.2 0.25
BMI (kg/m?) 345 310 £55 446 31.7 £ 6.2 0.11
Waist circumference (cm) 345 102.7 £ 135 446 105.0 + 149 0.024
Ethnic background (% AC/SE/OE/Asian/Ab/other) 345 64.9/11.0/7.0/3.2/0.3/13.6 447 55.7/11.2/9.2/4.5/2.9/16.6 0.015
Age at diabetes diagnosis (years) 345 57.1 +10.9 447 56.0 +11.3 0.19
Diabetes duration (years)® 345 9.0 [3.0-15.2] 447 6.0 [1.3-14.0] <0.001
Fasting plasma glucose (mmol/L)® 344 7.1 (5.5-9.2) 447 7.6 (5.7-10.1) 0.002
HbA; (%)° 345 6.9 (6.0-8.0) 447 7.0 (5.9-8.4) 0.085
Serum total cholesterol (mmol/L) 344 434+ 1.0 445 434+1.0 0.63
Serum HDL-cholesterol (mmol/L) 344 1.28 £ 0.31 445 1.22 £ 0.32 0.011
Serum triglycerides (mmol/L)" 344 1.5 (0.9-2.3) 445 1.5 (1.0-2.3) 041
Serum uric acid (mmol/L)® 344 0.34 (0.26-0.44) 447 0.33 (0.25-0.43) 0.053
Serum creatinine (pmol/L)" 345 75 (56-101) 447 75 (60-95) 0.85
Urinary ACR (mg/mmol)® 345 2.9 (0.9-8.8) 447 2.5(09-7.1) 0.050
eGFR (mL/min/1.73 m?) 345 80.6 + 18.8 447 82.7 +£16.9 0.091
eGFR categories (% G1/G2/G3a/G3b/G4)¢ 345 37.7/49.3/6.4/5.5/1.2 447 39.6/49.9/7.6/2.9/0.0 0.062
CKD Stage (% 0/1/2/3)¢ 345 57.1/30.7/6.1/6.1 447 59.1/32.4/6.9/1.6 0.008
Systolic blood pressure (mmHg) 345 147 + 20 446 143 + 20 0.003
Diastolic blood pressure (mmHg) 345 80 + 12 446 80 + 12 0.69
Neuropathy (%) 345 73.6 445 46.5 <0.001
PAD (%) 345 174 446 20.2 0.36
CVD (%) 345 5.5 447 54 1.00
IHD (%) 345 25.5 447 19.9 0.071
Alcohol consumption (standard drinks/day)© 326 0.1 [0.0-1.5] 436 0.1[0.0-1.2] 0.94
Smoking status (% never/ex—/current) 345 47.2/47.0/5.8 447 45.0/46.5/8.5 0.34
Any physical activity (%) 341 94.4 431 92.6 0.38
Diabetes treatment (%): 345 447
Diet 293 25.7 0.30
OHA 49.0 56.6 0.037
Insulin + OHA 21.7 17.7 0.17
Anti-hypertensive medications (%): 345 79.7 447 70.5 0.003
Diuretic 348 26.6 0.015
ACE-1 443 34.5 0.005
ARB 339 29.8 0.22
{3-Blocker 223 15.9 0.027
Calcium channel blocker 26.1 24.2 0.56
Other 43 3.6 0.59
Lipid-lowering medication (%): 345 73.9 447 67.3 0.050
Aspirin use (%) 345 438 447 34.5 0.008
Renal outcomes (N, %):
Incident DKD 300 37 (12.3) 400 39(9.8) 033
eGFR decline >30% 345 30 (8.7) 447 24 (5.4) 0.087
eGFR decline >5 mL/min/1.73 m?/yr 345 28 (8.1) 447 32(7.2) 0.69
Plasma biomarker concentrations®
apoA4 (peak area ratio) 345 1.17 (0.57-2.42) 447 0.89 (0.44-1.79) <0.001
CD5L (peak area ratio) 344 2.37 (1.17-4.79) 445 1.00 (0.56-1.79) <0.001
IBP3 (peak area ratio) 335 0.97 (0.58-1.64) 416 1.04 (0.66-1.65) 0.049

BMI, body mass index; AC, Anglo-Celt; SE, southern European; OE, other European; Ab, Aboriginal; ACE—I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker;
OHA, oral hypoglycemic agent; eGFR, estimated glomerular filtration rate by CKD Epidemiology Collaboration equation; PAD, peripheral arterial disease; CVD, cerebrovascular disease;

[HD, ischemic heart disease.
¢ All values are mean =+ SD (standard deviation) unless labelled otherwise.
b Geometric Mean (SD range).
¢ Median [IQR - interquartile range].
4 eGFR categories G1 > 90, G2 60-89, G3a 45-59, G3b 30-44, G4 15-29 mL/min/1.73 m>.
¢ CKD (chronic kidney disease) stage defined by KDIGO 2012 guidelines.?!
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Table 2
Prognostic performance of the most parsimonious prediction models applied to the vali-
dation cohort.

Incident DKD Decline 230% Decline 25
mL/min/1.73m?/yr

Number of Subjects 362 413 413
Observed outcomes 36 (9.9%) 24 (5.8%) 31 (7.5%)
(%)

Predicted outcomes 39 (10.8%) 18 (4.4%) 35 (8.5%)
(%)
Discrimination
AUC (95%Cl) 0.83 0.74 0.63 (0.53-0.73)
(0.77-0.88) (0.65-0.84)

At max YI cut-off: (3.3%) (7.9%) (8.6%)
Sensitivity (%) 88.9 54.2 51.6
Specificity (%) 63.5 88.2 72.3
PPV (%) 21.2 22.1 131
NPV (%) 98.1 96.9 94.8

At 5% cut-off:

Sensitivity (%) 80.6 54.2 71.0
Specificity (%) 68.4 81.5 50.3
PPV (%) 22.0 153 104
NPV (%) 97.0 96.6 95.5
At 10% cut-off:
Sensitivity (%) 722 41.7 419
Specificity (%) 77.9 89.7 76.7
PPV (%) 26.5 20.0 12.7
NPV (%) 96.2 96.1 94.2
At 20% cut-off:
Sensitivity (%) 52.8 20.8 19.4
Specificity (%) 88.0 95.9 92.7
PPV (%) 32.8 23.8 17.6
NPV (%) 94.4 95.2 93.4
Calibration
H-L test (% P)* 46.9, <0.001 48.4,<0.001 21.2,0.01

Only participants with complete data were included in each model. The most parsimoni-
ous prediction models are as follows: incident DKD - IHD, eGFR, total cholesterol, apoA4;
decline >30% - age, diuretic use, IHD, DBP, total cholesterol, apoA4, IBP3; decline >5 mL/
min/1.73 m?/year - IHD, DBP, HbA,, IBP3.% Discrimination performance measures are
given for 5%, 10%, and 20% 4-year renal decline risk cut-offs, as well as for the optimal
cut-off (shown in parentheses) defined by maximum Youden Index (YI). AUC = area
under the curve; H-L = Hosmer-Lemeshow; x? = Chi squared test value, P = p-value,
PPV = positive predictive value; NPV = negative predictive value.
2 Hosmer-Lemeshow (H-L) goodness-of-fit test with 9 degrees of freedom.

specificity, 21.2% positive predictive value and 98.1% negative predictive
value to predict four-year risk of developing DKD. For the other defini-
tions of renal decline, eGFR decline >30% and annual eGFR decline >5
mL/min/1.73 m?, discrimination was moderate (AUC = 0.74 (95% CI
0.65-0.84) and (AUC = 0.63 (95% CI 0.53-0.73), respectively). Using
additional predicted risk cut-offs of 5%, 10% and 20%, allowed improve-
ments in specificity, with loss of sensitivity as the cut-off increased (see
Table 2). The predicted risk of decline in renal function was
underestimated across the lower risk deciles and overestimated for
those in the highest risk category for all three definitions (see Fig. 1).

3.3. Simple consensus prediction model

The simple consensus model performed well in both cohorts with
moderate to good discrimination (AUC range 0.61 to 0.89; see Supple-
mentary Fig. 3) and acceptable calibration (P2 0.06) across all three def-
initions of renal decline (see Table 3 and Fig. 1). The consensus model
had the highest predictive ability for incident DKD, providing good dis-
crimination in the development and validation cohorts (AUC = 0.89
(0.85-0.94) and (AUC = 0.88 (0.84-0.93), respectively). At the optimal
score cut-off, sensitivities of 94.6% and 86.1%, and specificities of 68.0%
and 78.2%, were observed for the development and validation cohorts,
respectively. For eGFR decline >30% and annual eGFR decline 25 mL/
min/1.73 m? the consensus model provided similar levels of

discrimination in the validation cohort to that seen with the most parsi-
monious models (AUC = 0.73 (0.64-0.81) and (AUC = 0.61
(0.51-0.70), respectively). In the validation cohort, the consensus
model overestimated risk by 1.2 fold across the three definitions of
renal decline, but the Hosmer-Lemeshow test showed that there was
no significant difference between predicted and observed outcomes (P
>0.21) (see Fig. 1 and Table 3).

4. Discussion

The present study provides the first validation of the PromarkerD
test which confirms the prognostic utility of a novel panel of plasma
proteins in DKD. Three biomarkers, apoA4, CD5L and IGFBP3, combined
with a limited number of conventional clinical variables, accurately pre-
dicted rapid eGFR decline over a four-year period in a cohort of
community-based patients with type 2 diabetes that was independent
of the participants used to develop the test. The predictive performance
of a series of models, including i) models specific to each definition of
eGFR decline, and ii) a simple consensus model which could be applied
across all definitions, had good discrimination and calibration.

The development of the PromarkerD test in an earlier study® showed
that the plasma protein panel added significant prognostic benefit to
known clinical risk factors, including eGFR and albuminuria, for
predicting renal decline in participants with type 2 diabetes from
FDS2. In the present study, the three most parsimonious definition-
specific models were applied to an independent cohort of people with
type 2 diabetes also sourced from the FDS2. The prognostic performance
of these models was good in terms of discrimination (AUC range 0.65 to
0.83), but calibration was poor reflecting the small numbers of partici-
pants in lower deciles. It is not uncommon to observe poor calibration
and/or discrimination in validation studies, often due to differences in
case-mix, measurement and definition of predictor variables and
event rates.!” Indeed, the baseline characteristics of individuals in the
validation cohort differed across most clinical variables included in the
parsimonious models (age, diuretic use, history of IHD, eGFR and
HbA,.) and fewer had suffered a decline in renal function compared to
those in the development cohort.

Given the range of clinical variables required for the three most par-
simonious models, some of which may be difficult to obtain in usual
care, a simple and easy to use consensus model was derived. This
model comprised three clinical variables (age, serum HDL-cholesterol
and eGFR) which were chosen based on accessibility in routine diabetes
care and statistical significance across the different definitions of renal
decline, and were combined with the three plasma proteins apoA4,
CD5L and IGFBP3. The consensus model provided similar discriminative
ability to the most parsimonious models, but improved on performance
in terms of calibration across the three definitions of renal decline.

The development and validation of accurate prediction models that
predict renal decline and future DKD risk could aid clinical decision
making and support cost-effective individualized treatment. In addition
to supporting the optimization of glycemic and blood pressure control
in high risk patients, such tests could justify the early introduction of
new treatments that have renal benefits beyond blood glucose lowering
such as the sodium glucose transporter subtype 2 (SGLT-2) inhibitors
empagliflozin and canagliflozin'®!° By the same token, identifying low
risk patients whose management could be rationalized should have
benefits for limiting adverse effects and cost while improving adher-
ence. Validated prognostic tests such as PromarkerD may also be useful
for selective enrolment of high-risk patients into future clinical trials of
interventions in DKD, allowing smaller and shorter trials because of rel-
atively high background event rates. A formal cost-benefit analysis is yet
to be conducted but tests such as PromarkerD have the potential to re-
duce CKD-related healthcare spending that currently exceeds US$100
billion annually.°

The present study had limitations. The sample size was not large but
the participants were well characterized and they were followed over a
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Fig. 1. Calibration plots of the validation cohort showing the observed and predicted number of subjects experiencing a renal outcome over 4 years by deciles of risk. A. Incident DKD (most
parsimonious model), B. Incident DKD (consensus model), C. Decline >30% (most parsimonious model) D. Decline >30% (consensus model), E. Decline >5 mL/min/1.73 m? (most
parsimonious model), F. Decline 5 mL/min/1.73m? (consensus model). Observed numbers are shown by the light grey bars and predicted numbers by the dark grey bars.

prognostic time horizon that is relevant to people with type 2 diabetes
and clinicians. The majority of FDS2 participants were of Caucasian ori-
gin (79%), limiting the generalizability of the models to other racial and
ethnic groups. Only baseline clinical and biomarker data were used to
predict risk, and subsequent changes in biomarker concentrations or di-
abetes management were not considered. Nevertheless, the prediction
models were validated temporally in this study as the relatedness of
the two cohorts showed they were clinically distinct, suggesting the
models could be applied to similar people with type 2 diabetes. To
fully realize the generalizability of the models, additional external vali-
dation across different clinical settings and populations with a larger
numbers of events, is warranted.

5. Conclusions

The present study assessed and validated the prognostic utility
of PromarkerD, a novel diagnostic test that combines a panel of

plasma biomarkers (apoA4, CD5L and IGFBP3) with clinical
variables (age, HDL-cholesterol and eGFR) to accurately predict
future renal decline in people with type 2 diabetes. PromarkerD
may be useful for risk stratification in future clinical trials and has
the potential to aid clinical decision-making by identifying at-risk
individuals for earlier targeted personalised intervention and
monitoring of disease progression, with the potential for improved
patient outcomes.
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Table 3

Prognostic performance of the consensus prediction model in the development and validation cohorts.

Performance Measure Incident DKD Decline >30% Decline >5 mL/min/1.73m?/yr
Development Validation Development Validation Development Validation

Number of Subjects 290 362 333 413 333 413
Observed outcomes (%) 37 (12.8%) 36 (9.9%) 30 (9.0%) 24 (5.8%) 28 (8.4%) 31 (7.5%)
Predicted outcomes (%) 36 (12.4%) 42 (11.6%) 30 (9.0%) 28 (6.8%) 28 (8.4%) 36 (8.7%)

Discrimination

AUC (95%CT) 0.89 (0.85-0.94) 0.88 (0.84-0.93) 0.81 (0.75-0.87) 0.73 (0.64-0.81) 0.70 (0.61-0.80) 0.61 (0.51-0.70)

Optimism-corrected AUC” 0.87 0.77 0.64

At max YI cut-off: (7.1%) (12.0%) (6.1%) (4.4%) (10.1%) (8.3%)
Sensitivity (%) 94.6 86.1 96.7 833 60.7 67.7
Specificity (%) 68.0 782 61.7 54,0 72.8 57.6
PPV (%) 30.2 304 20.0 10.0 17.0 115
NPV (%) 98.9 98.1 99.5 98.1 953 95.6

At 5% cut-off:
Sensitivity (%) 97.3 97.2 100.0 70.8 85.7 83.9
Specificity (%) 61.3 63.8 53.1 58.1 38.0 34.0
PPV (%) 26.9 229 174 94 113 9.4
NPV (%) 99.4 99.5 100.0 97.0 96.7 96.3

At 10% cut-off:
Sensitivity (%) 78.4 86.1 60.0 41.7 60.7 45.2
Specificity (%) 74.7 73.9 74.3 79.9 72.5 66.2
PPV (%) 31.2 26.7 18.8 114 16.8 9.8
NPV (%) 95.9 98.0 94.9 95.7 95.3 93.7

At 20% cut-off:
Sensitivity (%) 75.7 722 333 20.8 17.9 129
Specificity (%) 85.4 84.7 90.4 938 9438 9438
PPV (%) 43.1 34.2 25.6 17.2 238 16.7
NPV (%) 96.0 96.5 93.2 95.1 92.6 93.1

Calibration

H-L test (% P)* 8.5,0.39 5.6, 0.78 14.7, 0.06 7.1,0.62 14.3, 0.07 12.0,0.21

Only participants with complete data were included in each model. The consensus prediction model includes age, serum HDL-cholesterol, eGFR, apoA4, CD5L, IBP3. Discrimination per-
formance measures are given for 5%, 10%, and 20% 4-year renal decline risk cut-offs, as well as for the optimal cut-off (shown in parentheses) defined by maximum Youden Index (YI).
AUC = area under the curve; y? = Chi squared test value, P = p-value, PPV = positive predictive value; NPV = negative predictive value.

2 Hosmer-Lemeshow (H-L) goodness-of-fit test with 8 (development cohort) or 9 (validation cohort) degrees of freedom.

b Based on internal validation by bootstrap resampling (development cohort).
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